
インバー合金IC-DXの観測機器への応用

Application of Invar Alloy IC-DX to Astronomical Instruments

高橋 英則(東京大学・天文学教育研究センター)

田中 壱 (ハワイ観測所/RCUH) 小奈 浩太郎、坂口 直輝 (新報国マテリアル)

HIDENORI TAKAHASHI (IoA / UTokyo)

ICHI TANAKA (NAOJ Hawaii / RCUH)
KOTARO ONA, NAOKI SAKAGUCHI (Shinhokoku Material Corp.)

Contents

- ◆ インバー合金: IC-DXとは?
- 物理特性評価
 - : 冷却時組織変化の有無
- IC-DXの天文観測装置への応用
 - : 多天体分光マスクの場合
- まとめ

- What is Invar Alloy: IC-DX?
- Evaluation of Physical Property
- Application of IC-DX to astronomical instruments
- Summary

インバー合金とは?

インバー合金 = 低熱膨張合金

Invar Alloy = Low thermal expansion alloys

合金名	主成分	熱膨張 (×10 ⁻⁶ /K)	一般的用途
Invar (36Invar)	36%Ni-Fe	≦2.0	成型金型
Super Invar	32%Ni-5%Co-Fe	≦1.0	露光装置
Zero Invar	32%Ni-5%Co-Fe (高純度)	0	露光装置
Ductile Invar	High C-36%Ni	2.0	工作機械
Stainless Invar	Fe-52%Co-11%Cr	0 (再現できていない)	なし

インバー合金の課題

Technical Issues for Invar Alloy

1 低温安定性 低温域でのマルテンサイト変態

2 経年変化 長期間による寸法変化

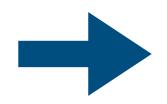
3 低ヤング率 鉄鋼材料の6~7割程度

4 耐食性 ステンレス鋼には及ばない

Stability at low temperatures

→ Martensitic transformation

Aging


→ Dimensional change

Low Young's Modulus

→ 60-70% of steel materials

Corrosion resistance

→ Lower than stainless steel

インバー合金IC-DXの開発

Development of Invar Alloy: IC-DX

IC-DXとは?

- Fe-Co-Cr系インバー合金
 - (cf: Super Invar, Zero Invar: Fe-Ni-Co系インバー合金)
- Cr含有により、他のインバー材より耐食性に優れる
- 極低温域でもほぼゼロ熱膨張
- 極低温(4K)でもマルテンサイト組織化しない安定性
- 熱処理が炉冷であるため、**残留応力が少ない**
- 極低炭素により低経年変化を実現

- Superior corrosion resistance to other invar materials because of Cr content
- Almost zero thermal expansion at cryogenic temperatures
- Stable without martensitic structure even at cryogenic temperatures (4K)
- Low residual stress because of furnace cooling during heat treatment
- Low carbon content realizes low aging

新報国マテリアルのインバー合金ラインナップ

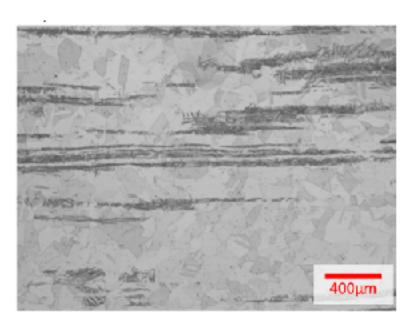
The lineup of Invar Alloy products by Shinhokoku Material

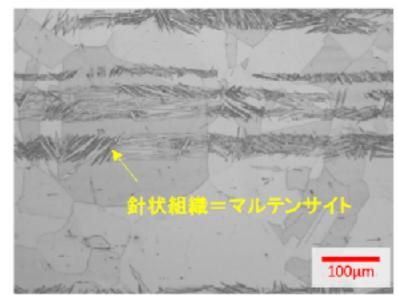
特徴	鋼種名	熱膨張 (×10 ⁻⁶ /K)	ヤング率 (GPa)	使用可能 温度域(℃)	主な用途
Invar	IC-36	<2.0	120	≧-196	_
Super Invar	IC-36S	<1.0	120	≧-30	半導体露光装置
快削性	IC-36FS	<1.0	120	≧-30	半導体露光装置
Stainless Invar	SLE-2	5.0	170	_	研磨定盤
高剛性 <mark>※</mark>	IC-EX1	1.5	145		液晶露光装置
耐極寒用	IC-LTX	<0.1	130	≧-100	宇宙関係
ゼロ膨張※	IC-ZX	0	130	≧-20	半導体露光装置
究極	IC-DX	<0.3	160	≧-253	TMT

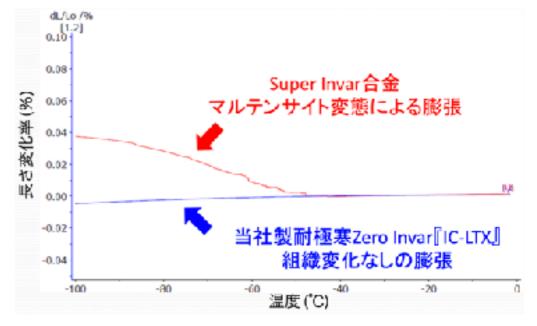
物理特性評価項目

Items of Evaluation of physical property

- 冷却試験(組織変化)
- 極低温熱膨張率測定
- 経年劣化試験(寸法測定)
- ヤング率測定
- 耐食性試験
- 残留応力
- etc···


- Cooling Test (Microstructural Change)
- Cryogenic thermal expansion measurement
- Aging test (dimensional measurement)
- Young's modulus measurement
- Corrosion resistance test
- Residual stress
- etc...

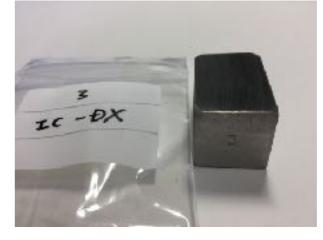

Fe-Ni(-Co)系インバー合金常温ではオーステナイト単相組織

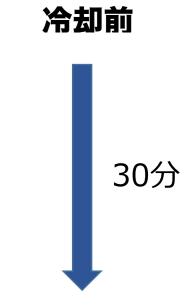

- → 低温下で**マルテンサイト変態**が起こる
- → マルテンサイト変態すると**低熱膨張性が消失**

Fe-Ni(-Co) Invar alloys have a single phase austenite structure at room temperature

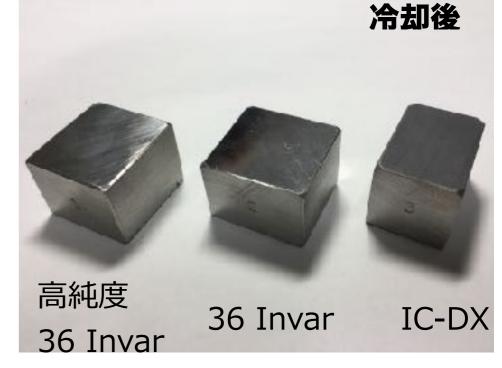
- → Martensitic transformation occurs at low temperatures
- → Loss of low thermal expansion

冷却(He浸漬)試験:組織変化


Invar thermal test into LHe

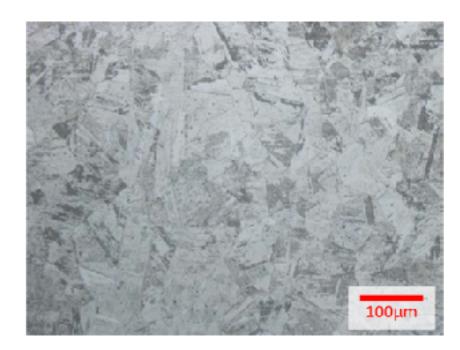

高純度 36 Invar

36 Invar

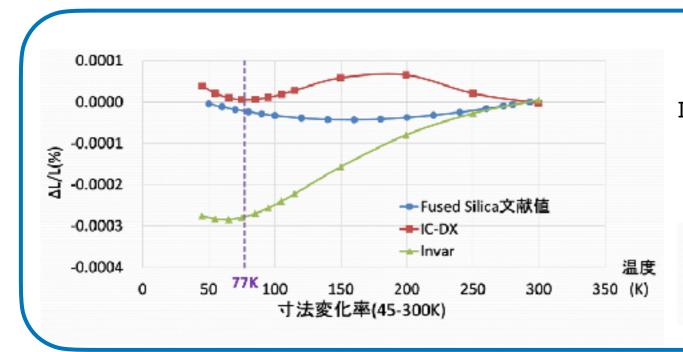

IC-DX

保持方法

LHeタンクへ


冷却(He浸漬)試験:組織変化

LHe Dipping test


常温 (ambient) — 77K (LN2) — 4K (LHe)

4Kの温度下でもマルテンサイト変態はしない→マルテンサイト変態による膨張や合金自体のインバー特性の消失はない
No Martensitic transforation → Non-disapper of physical properties

参考

IC-DXは極低温域でもInvar合金より寸法変化が小さい
→熱膨張が小さい

(但し、45Kまでのデータのみ)

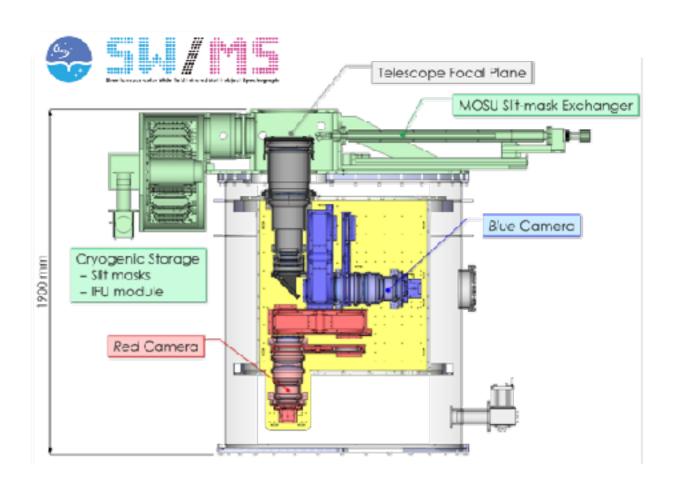
	IC-DX	Invar	Fused Silica
77K長さ変化率(%)	0.00001	-0.00028	-0.00002
ΔFused Silica (77K)	0.00003	-0.00026	-

IC-DXの天文観測装置への応用

Application of Invar Alloy IC-DX to Astronomical Instruments

- ゼロ膨張、非マルテンサイト組織化 → 極低温での利用(赤外線観測装置)
- 高ヤング率
- 極低温組織安定性
- 低残留応力、低経年変化、耐食性 → 長期間の安定利用
- → 光学素子治具
- → 冷却装置、衛星部品
- zero thermal expansion & non-martensitic structure → Usage at cryogenic temp. (For IR instrument)
- High Young's Modules → Optics
- Structural Stability at low temperature → Cryogenics, Satellite
- Low residual stress, low aging, corrosion resistance → Stability for long term

- 多天体分光マスクシートへの応用 (赤外線観測装置)
- 冷却光学素子への応用

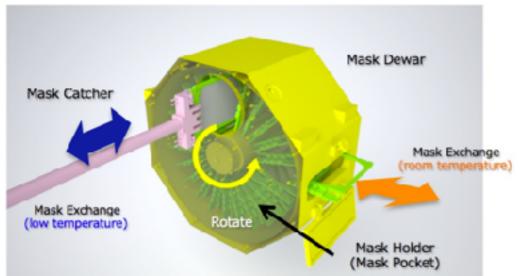

- → スリット位置が加工時(常温)と 運用時(低温)で不変
- → 光学パラメータが不変
- Mask sheet of multi object spectroscopy → Non displacement of slit position between ambient and low temp.
- Cryogenic optics → constant of optical parameters between ambient and low temp.

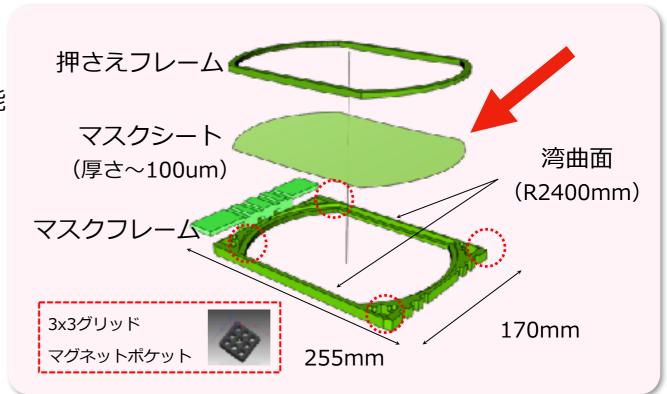
Application for Mask sheet of Multi-object spectroscopy

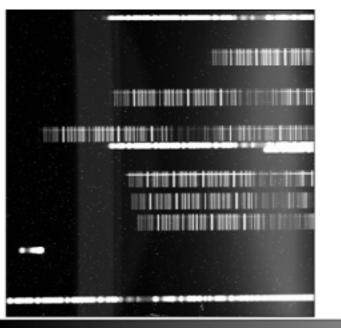
近赤外線広視野多天体分光カメラ:SWIMS

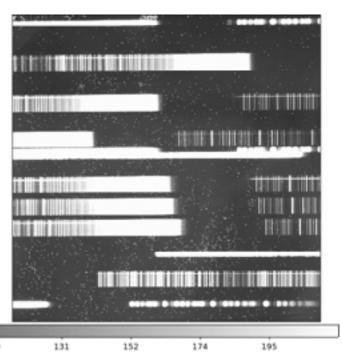
- SWIMS: Simultaneous-color Wide-field Infrared Multi-object Spectrograph
- TAOの初期観測装置として開発
- 2018年(S18A) から2023年(S22B) までハワイ観測所すばる望遠鏡のPI装置として観測運用
- 広視野(~φ9分角)
- 近赤外線の2つの波長域(0.9~1.4 / 1.4~2.5μm)を同時観測
- 撮像 or 多天体分光

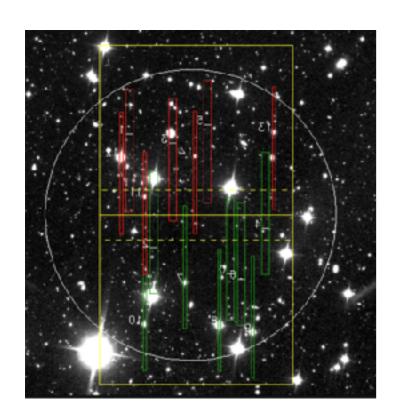
Application for Mask sheet of Multi-object spectroscopy


多天体分光ユニット


- 各マスクシートに20-30スリット
- カルーセルに15枚のマスクシートをストア可能
- ▼スク交換時のサーマルサイクル~3日間


Multi-Object Spectroscopy Unit


- 20-30 slit (objects) / sheet
- ~15 sheets in mask dewar
- Thermal cycle ~ 3 days

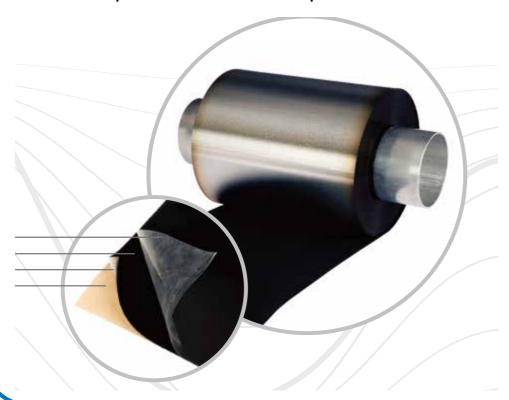


現在のマスクシートの問題点

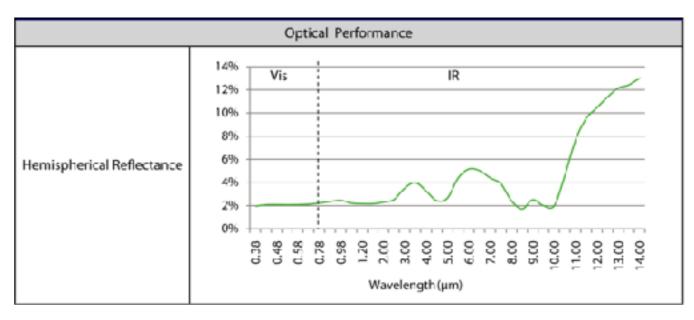
- マスクシート上のスリット配置は撮像モードでの天体位置を基に加工
- 加工時(常温)と運用時(低温)ではマスクシートの温度が異なる
 - → 低温時のスリットの(相対)位置が変化する
- 温度の違いによる変化量を想定してスリット加工を行うが、想定した温度になっているか?
 - Slit positions on the mask sheet is processed based on imaging observation.
 - Temperature of the mask sheet differs between processing and operation
 - → The (relative) position of the slit changes at low temperatures
 - Slit processing is performed assuming temperature differences.
 - → How is real temperature?

熱収縮がなければ 解決する(はず)

No thermal expansion, No problem


検討事項 (issues)

- シート形状への加工:大きさ・厚さ (size, thickness)
- 黒色塗装 (coating for anti-reflection)
- スリット加工(レーザーカット)(laser cutting)
- 冷えるか? (cooling)


- → **クリア** (clear)
- → **クリア**(clear)
- → **本講演** (this talk)
- → 今後 (in the future)

Acktar VIS and IR Light Absorbing Foil

Spectral Black[™] and Spectral Black HP[™]

- 可視~10umまで反射率2-5%
- すばる望遠鏡MOIRCSでも使われている (シートはアルミ)

レーザーカット (laser cutting)

● レーザーカットの課題 (technical issues of laser cutting)

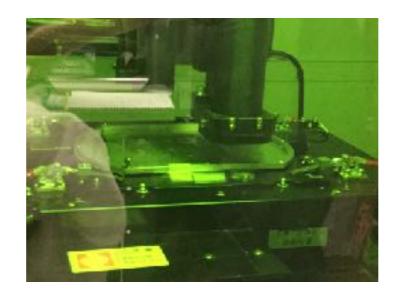
: 加工できるか? (fabricating?)

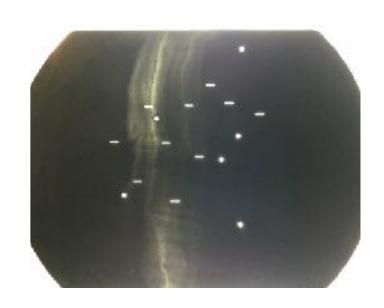
: 加工パラメータは? (parameters?)

: 蓄熱による変形は? (thermal heating?)

: スリット穴や丸穴の断面(キレ)は? (cross-sectional sharpness?)

● 加工機


: スリット作成用レーザー加工装置@国立天文台ハワイ観測所


:XYステージ、制御系=アルプスエンジニアリング

:レーザー部=イエナオプティクス(独)

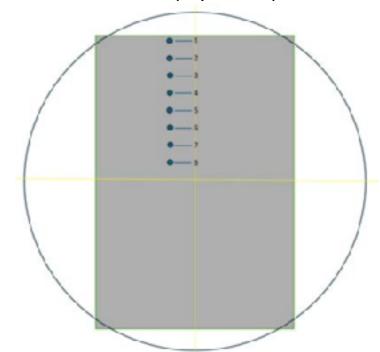
: MOIRCS, FOCAS, SWIMSのマスクカットの実績あり(0.1mm厚アルミシート)

レーザーカット (laser cutting)

● サンプル (sample)

: IC-DX t=0.05mm, 0.1mm

: Acktar黒色塗装あり (with Acktar coating)

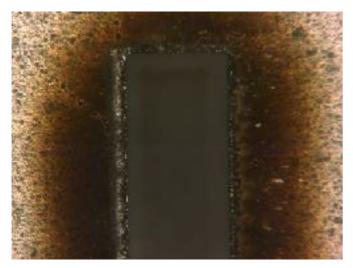

● 加工パラメータ (parameters)

: 電圧 (voltage) = 3~5.2 V

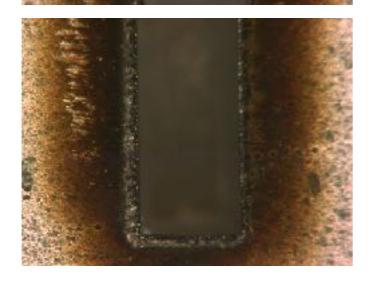
: レーザー周波数 (freq.) = 2kHz (固定)

:速度 (speed) $=15\sim30$ mm/sec

:照射回数 (repetition) $= 8 \sim 20$ 回

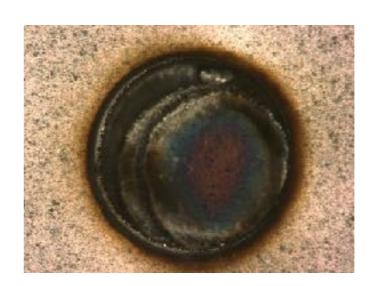


- カットはホール1つスリット1つのペアをパラメータを変えながらカットしていき、切れ味などを評価。
- スリットは幅0.4mm長さ1cm、ホールは直径0.8mm。MOIRCSでよく使われる数字。
 - Change cutting parameters for each slit / hole → Evaluate cross-sectional sharpness
 - slit width = 0.4mm, slit length = 1cm, hole diameter = 0.8mm (typical values for MOIRCS)



Application for Mask sheet of Multi-object spectroscopy

結果 (result:t=0.05mm)

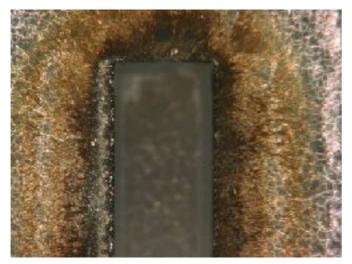

● 加工パラメータ (parameters)

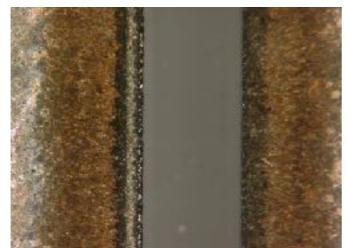
: 電圧 (voltage) = 4.7 V

: レーザー周波数 (freq.) = 2kHz (固定)

: 速度 (speed) = 15mm/sec

: 照射回数 (repetition) = 8回




- ややデブリが見られるものの、上記パラメータでの加工が 一番良さそう。
- これを基に0.1mm厚のカットを行う。
 - Cutting success (even with debris)
 - Cut 0.1mm sheet based on this parameters

Application for Mask sheet of Multi-object spectroscopy

結果 (result:t=0.1mm)

● 加工パラメータの一例 (parameters)

: 電圧 (voltage) = 4.2 V

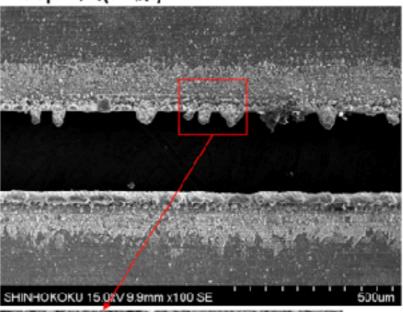
: レーザー周波数 (freq.) = 2kHz (固定)

: 速度 (speed) = 11mm/sec

: 照射回数 (repetition) = 10回

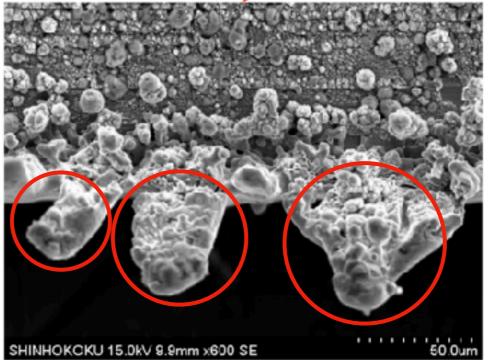
- 0.05mmと同様のパラメータでは切れない。
- 最適パラメータの組み合わせを探したが有効な値は見つからず。
- ●切断の際の熱が溶接効果として働き、デブリとして残る。
- It does not cut with the same parameters as 0.05mm.
- No best combination of parameters.
- Heat during cutting acts as a welding effect and remains as debris.

参考:レーザー加工時のEDX分析

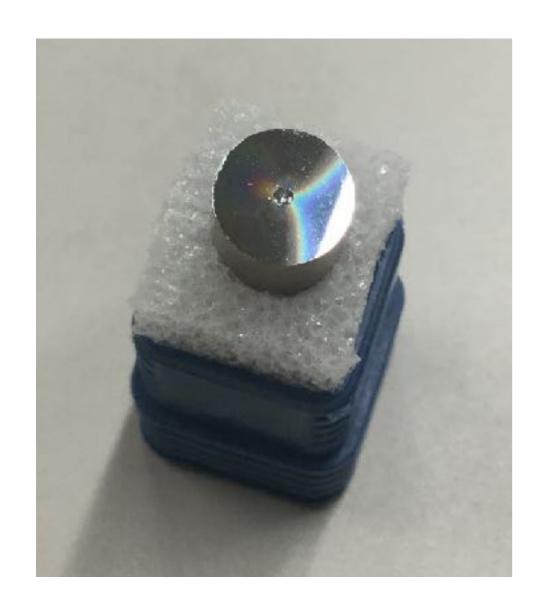

EDX analysis

SLE-2:0.1mm箔+ファインブラック処理(ブラザー工業株式会社)

250μm穴近傍(SE像)


250μm穴(SE像)

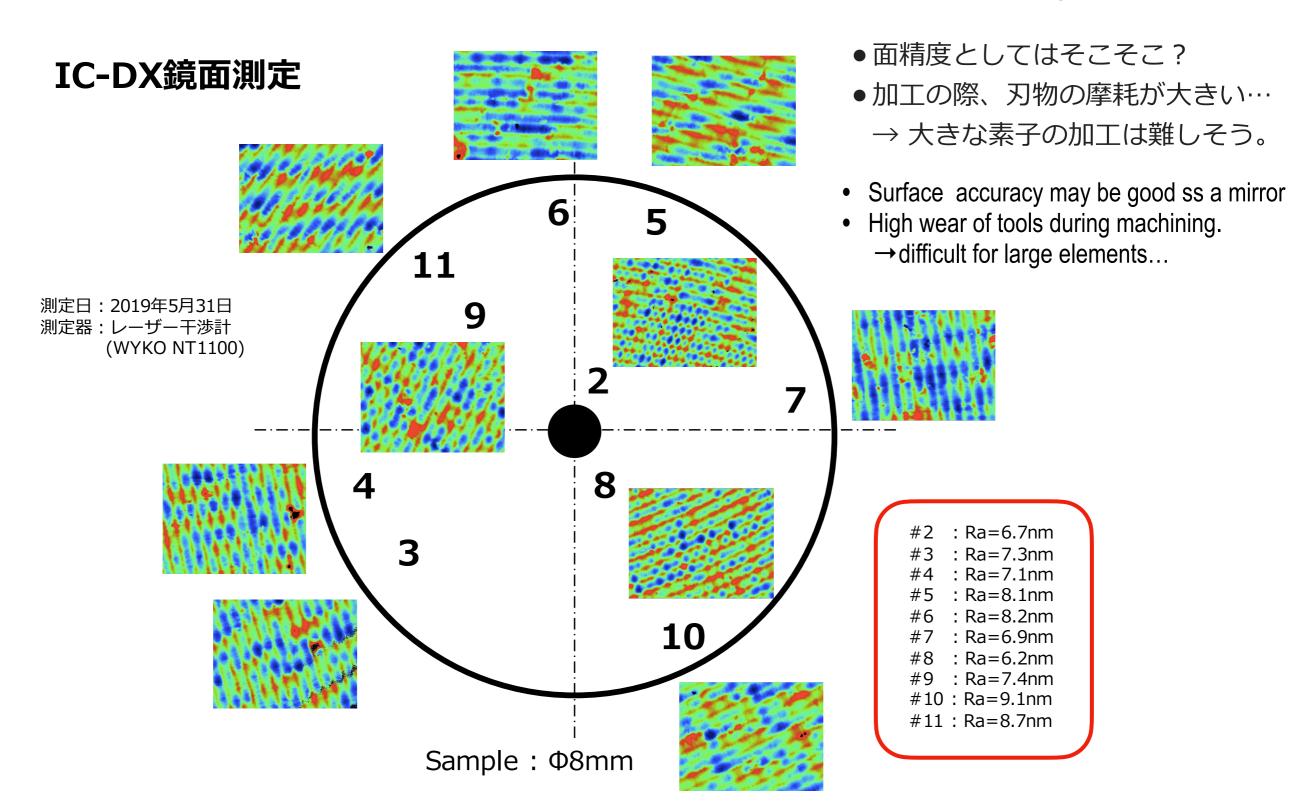
付着物拡大


EDX分析の結果、O(酸素)が 多く含まれており、一度溶解し た母材が酸化し、再凝固・成長 したと思われる。


- EDX analysis showed a high content of O (oxygen).
- Once-melted base material was oxidized and re-solidified/grown.

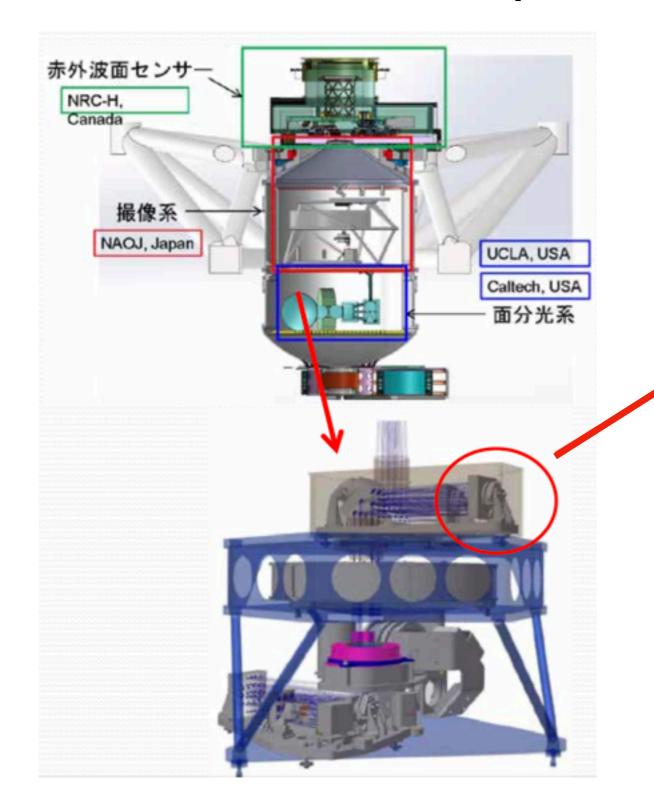
IC-DXの超精密加工

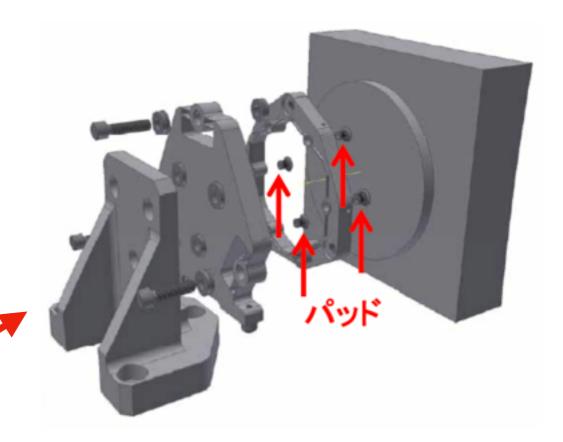
Ultra-precision machining



名古屋大学理学部装置開発室で超精密加工 Ultra-precision machining at Nagoya Univ.

ATC/Opt Shop WYKO NT1100で測定 Measurement with WYKO NT1100 at ATC/Opt shop


IC-DXの超精密加工


Ultra-precision machining

その他の応用例

TMT/IRISの試験部品

Fused Silicaの非球面鏡(200x200mm)

を接着するパッド

- Fe-Co-Cr系インバー合金であるIC-DXの特性評価試験の実施
 - → 極低温(4K)でもマルテンサイト組織化しない安定性を確認
- 観測機器へのアプリケーションを検討
- 低温で用いられる多天体分光マスクシートへの応用
 - → 0.05mm厚シートの場合、レーザーカッティングが可能
 - → 冷却時の温度、温度分布の測定
- 極低温部品へのさらなる応用・要求は?
- Development & evaluation of Invar Ally : IC-DX
 - → Confirm stability (non-martensite transformation) at cryogenic temperature
- Application for astronomical instruments
- Mask sheet for Multi-Object spectroscopy
 - → Success cutting for 0.05mm thickness
 - → Measurement of temperature and thermal distribution around sheet at low temp.
- Other application ??